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ABSTRACT: Motivated by the fact that, in some realistic models combining SO(10) GUTs
and flavour symmetries, it is not possible to achieve the required baryon asymmetry through
the CP asymmetry generated in the decay of right-handed neutrinos, we take a fresh look
on how deep this connection is in SO(10). The common characteristics of these models
are that they use the see-saw with right-handed neutrinos, predict a normal hierarchy of
masses for the neutrinos observed in oscillating experiments and in the basis where the
right-handed Majorana mass is diagonal, the charged lepton mixings are tiny. In addition
these models link the up-quark Yukawa matrix to the neutrino Yukawa matrix Y with
the special feature of Y}y — 0. Using this condition, we find that the required baryon
asymmetry of the Universe can be explained by the soft leptogenesis using the soft B
parameter of the second lightest right-handed neutrino whose mass turns out to be around
108 GeV. It is pointed out that a natural way to do so is to use no-scale supergravity where
the value of B ~ 1 GeV is set through gauge-loop corrections.
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1. Introduction

Some of the unanswered questions left by the Standard Model (SM) acquire a new light
in Grand Unified Theories (GUTs). Among them the understanding of the structure of
masses has an important role. Theories based on SO(10) seem to have a special place
due to the possible structure of masses that can be achieved. First of all the spinorial 16
representation can accommodate all the known fermions including a right handed neutrino
component, N, which makes it possible to embed in a natural way a see-saw mechanism for
the explanation of the tiny masses of low energy neutrinos. On the other hand baryogenesis
through leptogenesis [l is a simple mechanism to explain the observed baryon asymmetry
in the universe. Here a lepton asymmetry is dynamically generated and then converted



into a baryon asymmetry due to B+ L violating sphaleron interactions. The lightest of the
right-handed neutrinos is produced by thermal scattering after inflation. It subsequently
decays out-of-equilibrium to a lepton and a Higgs doublet producing a CP and lepton
number violating asymmetry. The connection of leptogenesis to SO(10) GUTSs is then
natural, both by the inclusion of right handed neutrinos in the 16s and by the possible
variation of their masses which can be some orders of magnitude below Mgyt ~ 106 GeV.

However in realistic models where the expansion parameter describing the Yukawa
couplings of neutrinos, €, is of the order of the expansion parameter describing the Yukawa
couplings of up-type quarks, €, [-[], the value needed for the mass of the lightest right-

(7-8)

handed neutrino, My, ~ 10 GeV, lies below the bounds for a successful thermal lep-

togenesis; My, 2 10°GeV [J. This prompts us to address two questions as follows:

~

(i) How general is this statement in the context of Grand Unified models where one
naturally gets

ey~ ey~ — 7 (1.1)

(ii) If that is the case for many classes of such models, what are the possible scenarios
for leptogenesis that we may require to consider in order to preserve such a feature
of Grand Unified Models?

In the present work we show how easy it is to generate the relation eq. and at
the same time obtain My ~ 1078 GeV for lighter right-handed neutrinos. This will be
shown explicitly in the limiting case of the vanishing neutrino mixing angle associated with
reactor experiments s13 — 0, and of the dominant contribution of two light right-handed
neutrinos. The contribution from non-zero si3 and the heaviest right-handed neutrino can
be taken as perturbations. This enables us to determine, from the current experimental
values, the possible form of the Dirac couplings of left-handed neutrinos in the basis where
the mass of the right-handed neutrinos is diagonal, but without assuming any particular
hierarchy among them.

We then embed these results in a SO(10) context, without fully specifying a model but
rather making choices that are compatible with GUTs, which can be used as a starting
point in the construction of a complete SO(10) model. In fact our results are compatible
with the models of [f] (RV), [ (CM), ] (BKOT). Some results of the analysis are valid
for the model [f] (DHR) however in this case all the masses of right handed neutrinos
become relevant and hence the parameters relevant for leptogenesis behave differently. In
all these models, one considers symmetric matrices at the scale where SO(10) has not been
broken and then explains the generation of fermion masses with a minimal content of Higgs
bosons, such as two 10 representations, which are the Higgs bosons in the u and d sectors, a
126 representation to generate masses for right-handed neutrinos and a non-renormalizable
operator 45 to distinguish some features of the fermion masses. These are generic features
that may be used to construct more specific models, and in fact have been used extensively

(- [2).



The neutrino Yukawa texture and the right-handed neutrino masses determined in
many works do not allow for the standard leptogenesis [fl] to produce the required baryon
asymmetry of the Universe. Other mechanisms of inducing the appropriate baryon asym-
metry in extensions of the MSSM may be implemented (e.g. [L] and see [[[4] for a review)
or also mechanisms just using extra right-handed neutrinos (e.g. [[4]).

However, we observe that the soft leptogenesis of [E], allowing a resonance condition
with a small B term, works quite well within our scenario through the decay of the second
lightest right-handed sneutrino whose mass is around 10® GeV. We will see that the required
small B term (B ~ 1GeV) arises from the gauge one-loop correction involving a heavy
GUT gaugino once its tree-level value vanishes as it can be arranged easily in no-scale

supergravity.

2. Possible forms of m7, and Mg in models with an underlying Grand
Unified theory

We will identify elements of the right-handed neutrino mass matrix Mp and the Dirac neu-
trino mass matrix, m% , = Y"vsin 3/ V2, which are related to the low energy observables

(neutrino masses and mixing angles) by

m” = Ut My U* = —mY g Mzt (m} )" (2.1)

my,

Here U is the neutrino mixing matrix and m,, are the neutrino mass eigenvalues. This
expression is valid in the basis where charged leptons are diagonal, if their matrix is not
diagonal then we get U = UYU®*. Following the standard parameterization, let us write

U = Ups P U13PyUt Py (2.2)

where Uj; is the rotation matrix in the (7,j) plane, Ps = diag[e™,1,€*] and P, =
diag[e?”, ', 1] are the Dirac and Majorana phase matrices, respectively. We will use the
notation (m7 p)i; = mi; and (Y");; = v, that is, m; = yi;v sin 3//2.

For numerical values, we use the latest values of the fits for neutrino oscillation ob-
servables [[L6]:

Am3, € [7.3,9.3] x 107°eV?, 3, € [0.28,0.60]
Am2, € [1.6,3.6] x 1073eV?,  t2, €[0.25,2.1]
575 < 0.041. (2.3)

Following the GUT relations consistent with the hierarchical pattern of all the fermion

masses, we will work with the normal hierarchy;

Mg > My, > My, . (2.4)



Then, we make the following definitions to help us trace the hierarchy of low-energy neu-

_ Am2, VS 7 (2.5)
TSN A, T m, T ’
32 V3 V3

2.1 GUT considerations

trino observables:

Let us recall that the Yukawa sector of SO(10) at the renormalizable level comes from the
following allowed couplings in the matter Lagrangian [[L7];

Ly =y, (16);(16);(10) + y;7°(16);(16);(120) + ,7°(16);(16),(126) (2.6)
due to the famous decomposition 16 ® 16 = 10, © 120, & 126,. As has been widely
stated, the minimal Higgs content in order to generate Dirac masses for quarks and leptons
and Majorana masses for right-handed neutrinos is to have two Higgs bosons in the 10
representation of SO(10) and a Higgs in the 126 representation.

The Yukawa couplings yiljo associated with 10 representations give
d)T

(m%)" =m° m" =mip, (2.7)

while the 126 gives mass only to right handed neutrinos.

Prior to the Super-Kamiokande experiments [[[§], there were successful models which
could reproduce fermion masses with this Higgs content, however without explanation of
the exact relations between the elements of the same Yukawa matrix. With the current
data of the neutrino oscillation experiments [[Lf], now it is clear that the minimal content
must be extended to fit neutrino masses. This can be done by adding more 10, 120 or
126 Higgs fields or by adding non-renormalizable operators or other elements in the theory
beyond a GUT.

If we consider non-renormalizable operators we can alter the structure of the Yukawa
matrices. The Lagrangian of these operators is

R R R R
L0t e, (2.8)
My My My My

Loy = O7ys], Oy =16,

where R’s are possible representations coupling to 10 and 16 and yg is their corresponding
Yukawa matrix. An interesting case is the adjoint representation 45 whose vacuum expec-
tation value (vev) can point to any direction in the space spanned by the 45 generators
as long as it leaves the SM group SU(3). x SU(2);, x U(1)y unbroken. The space of 45
vev, that leaves unbroken the SM group, lies in the two dimensional subspace of U(1)’
generators of SO(10) that commute with SU(3). x SU(2);, x U(1)y. For example when
SO(10) is broken to the SU(3). x SU(2)r x SU(2)r, subgroup, the general form to which
the 45 should be pointing is

<45> = (B — L+ kTRg)M45. (29)

Successful and predictive scenarios can be obtained when incorporating flavour symmetries
into GUTs. With a clever choice of a flavour symmetry, it may not be needed to invoke



additional Higgs fields beyond two 10s and one 126 representations. However majority of
such examples do require at least one non-renormalizable operator (see [L] for a review).

From the experimental information on Voky and the quark masses we can reconstruct
the possible forms that the quark mass matrices, m?, can acquire from the above consid-
erations. However since we are just able to construct the left diagonalizations of m? from
Vexkm we need to make more assumptions on m?. One of the most successful and well
established assumptions is to consider that the mixings in each quark sector are small such
that they remain small when combined in the Vogn. This assumption can be naturally
identified with a strong hierarchical structure of m4?.

The diagonalizing matrix of Y7 = /2m4 /vq can be parameterized as the multiplica-
tion of unitary matrices Us3Uy3U12 where each Uj; is a rotation matrix in the (i, j) sector
including some phases. When Y? is hierarchical, the angles corresponding to this pa-
rameterization can be in fact approximately identified with the angles obtained from the
approximate multiplication ], UIZRUngRUQTgRYUggLUlgLUlgL ~ Ydiag. For the case of
the up quarks, we have

~ | L RN iopr, L R, I ipr R L N R _L 1
Yu & [c1acioyny — € 7Ferasinyry — € R Cin819Ya1 + S12519Y20
~ L R N ior, L R I ip R L I R _L 1
Ye R C1oC12Y2 T €7 o815yt + €7 |1y s10ya1 + $12512911 1,
N L R , R._L i L R i L R
Y ~ |ysschzcds + chyshaysae P + chpsihyase’ ™ + siysihy| (2.10)
where y” is the matrix after the unitary transformation in the (2,3) and (1,3) sectors.
We are particularly interested in analyzing the behavior in the (1,2) sectors. For small

: R _ R ~ R _ I " L _ .n " " "N "
rotations we have ciy = c3j = 1, s15 = y5; /yaq and s15 = y15/y5. When v < yihus1 /Y39,
one gets

Y| ~ fszSﬁng el = yaal, (2.11)

which, for the symmetric case, gives the famous relation sty ~ \/m,/m.. This forms the
basis of the Gatto-Sartori-Tonin relation [R3]

o e e [
ms me

This relation is in good agreement (originally the contribution just from the down sector

d P u

Vus = [S19 — € S19 . (212)

was assumed, but now the contribution from the up sector has become important) with the
experimental value of V5. In order to review the conditions for which y{; < y/5y5;/y5s,
let us give explicitly their expressions in terms of the small rotation angles and the original
Yukawa couplings:

. R L
[sfhy12€'928 + 5] [shyya1 €92 + claya]

1
Y11 = Yy —
y3305305é + O(y23y32/Y33)
_ 4R _ sl
Yoy [cfhy1a — sBhyrze™92][chyyar — skyysie192]

~

no L .R R L —igL L R —igh L R, (2.13)
Y22 Y22C53Co3 — Co3553Y32€ P23 — C53853Y93€ P23 + S53593Y33

From these expressions it is clear that, if the original Yukawa matrix contains a zero in the
(1,1) position, then the inequality vy, < y{,v4,/y4, is immediately achieved because of



Y33 > 192 leading to the desired hierarchy between charm and top quark masses. However
notice that y11 does not have to be exactly zero. As long as it is suppressed enough with
respect to Y15y, /yhs We can always have a relation of the type eq. P.13. This condition is
referred hereafter as the limit m{; — 0. As we have seen it can be realized in a particular
basis of the Yukawa couplings satisfying eq. P.11], which is however a basis independent
statement.

For a symmetric case, if we assume g9 < yo3 then in any of the cases of having
Y22 ~ Y23, Y22 << Yoz O Yoo > Yog, the second term in the first of the equations of eq.
will be smaller than the expression for y4,. Thus the interesting case is when yp1 is the
leading contribution in y{;. Let us take the case y22 ~ y23 then the leading contribution in
Y2 Jyhe will be simply y3,/y22 and hence we obey the condition y{; < y/5y5; /yse, in terms
of the original matrix elements: y11 < yi5/y22.

For matrices of the form [Rd, B, B3], where the elements Y% and Y34 are respectively

2
and €,

3

o one simply needs to require Y% < €. For matrices of the form [4], which

€
are also symmetric and hence compatible with SO(10), one recovers the requirements of
the element Y} with the present analysis. In this texture, Y% is € ~ A0 Y55 is zero but

24 is €2, and hence (y")3,/yhy = €*. Thus, by making Y% = O(e) in this case, an O(1)

correction to the relation sy ~ /m,/m. can be made.

2.2 Compatibility with the experimental information

Symmetric fits to the quark masses can be used as a guideline to construct models with
underlying SO(10), or SU(4). x SU(2)1, x SU(2) g, which after the SO(10) breaking assume
a symmetric structure. However a small departure from symmetric matrices do not change
the qualitative behavior of such fits and can be made compatible with SO(10) and flavour
symmetries.

The fits of these matrices into the experimental information can be made in many
ways depending on our theoretical assumptions. A minimal choice is to assume that the
supersymmetric corrections to the quark masses will not have a strong impact on the ratio
of masses that we use for the fit. We also assume that the Yukawa matrices are the only
source of CP violation and that the contributions from the transformation of the squared
soft mass matrices of the supersymmetric particles to the basis where the Yukawa matrices
are real and diagonal are negligible. We specify this last requirement because we can choose
to fit the quark mass matrices with ratios of masses and with the fits of the unitary triangle,
where various CP violating experiments are taken into account.

With increasing precision in the determination of the fits of the unitary triangle in the
SM, however, one has a very tight constraint on the parameters and one should not regard
this as a final fit of a particular texture but as an indication of the current compatibility of
such texture with the theoretical assumptions and experimental information. The purpose
of the present analysis is to clarify the consequences of having a negligible Y} entry, giving
the relation s{y ~ \/my/m., and furthermore a low range of right handed neutrino masses,
which turn out to be incompatible with the standard thermal leptogenesis to produce the
observed baryon asymmetry of the universe. For completeness we present in appendix ([B])



the current fit of a symmetric texture with negligible Y74 element, compatible at 68% C.L.
with up-to-date fits of the unitary triangle.

It is interesting to see that two different choices of symmetric matrices in the up sector,
(B-M, f) and (R4, ), give rise to different phenomenology and consequences, e.g., for
leptogenesis. This is because we then have clearer selection criteria on how to single out
the models, apart from direct fittings to experimental mass matrices and quark mixing.
Further precision analyses in the unitary triangle will constrain more such possibilities.

For non-symmetric fits 1], we have a rather different situation because often mf,
should be of the order of m{, to reproduce appropriate mixings and quark masses. The
non symmetric fits can be used to construct models with underlying SU(5) symmetries (see
for example [Pd]).

In the following, we will consider the limit (mY ;)11 = m{; — 0 and explore its conse-
quences for neutrino oscillations and leptogenesis.

2.3 Consequences of (m% )11 — 0
2.3.1 General structure of the matrix of low energy neutrinos

The explicit form of the low energy neutrino mass components from eq. (P.1) is

mee = rcfysty + €207 sty 4 tefyclpe P

v3

14
m : 5128138 t C12513S

e i(5—20 12513523 12513523
— = so3513c13€"¢ ) freizsia( cracos — ——5 | T 3pc12¢13| 23812+ ——5—
Mys e e e

14
m . 238128 t C12823S

ot i(6—20 23512513 12523513
—T = cy3erzs13€' 027 — reggsy — 5 T C12823 | + —-cC12¢13( 523512 — — 5
My e e e

v 2
m . S$125138 t .

pe 2 2 2o 12513523 i59
——— = 8§53C]3€ +r|cecy———s— | — 7(623512 + c12513523/€")
My e e='r

v 2
My €23523C13 €23512513 512513523

= 50 T\ 75 tc12823 || C12€23 — —— 55—
My e e e
B Conslo 12523513\ (_ C12€23513
o2ip 512 — 5 12523 = — 5

mY 333, 23512513 2 c1aca3513 ) >

TT

= - r : 128 —— | S192893 — ———— 2.14

- o2 < 7 + 12 23> + 622P< 12523 cid > ) ( )

where we have expressed the elements of m” in terms of the sub-indices e, 4 and 7. In
appendix ([f]) we have written the numerical central values of the angles, up to t, s33
and possible phase variations. From eq. [A.1] we can see that in the limit of s;3 = 0, all
the numerical entries that are not multiplied by t in eq. do not change its order of
magnitude. On the other hand the complete form of m” in terms of a diagonal matrix
Mpg = diag[M, My, Ms] and a general matrix m? j is given by

2
1 My, MMy My,
v 2
m = E'M MyiMo; Moy MgTg; | - (2.15)
. A 2
¢ my;Mg; MM, M3,



Now when (m/ )11 = m11 — 0, this matrix acquires a very simple form. Then we can
simply identify the elements of eq. with eq. and find the form of M; in terms of
m;; and the restrictions of its elements.

It is clear from eq. that the contribution from t can become relevant just for my,
and mY_. But since t < O(0.1) according to eq. P.3, this contribution can be at most as
the same order of the rest of the contributions in (m,);; or (my)13. From eq. we can
see that these elements are given by

2 2
v _ Mip  Mi3 v _ M121m32 +m13m33

ee ]\4’2 M3 ) er M2 M3

m (2.16)

Identifying certain elements in mY ,, we can obtain the predicted ranges for the right-
handed neutrino masses which will be derived in detail in the next subsection. In this

subsection, we try to extract the general expressions for the parameters such as
M1 M1 - (YVTYV)HUQ
— or and m; =

M — —_— 2.17
1, M2 M3, ]\41 ) ( )

which are relevant for leptogenesis. Note that m/, is the element which contains less
parameters and so we can make less assumptions when deriving expressions for eq. .17
Then we have

@m_%a]

2
mi,1 M m2,

My =

2 2 2(0—0) 2 2 2 2
My, [rctssty + €20-9) 5T + telzeiye 2]

2 2
Sm2 b [1 + %%} GeV, (2.18)

> 2 x 10%0y7
. Mz mi,

where we have set the bound on Ms by taking the numerical values of the first two contri-
butions of the denominator in eq. P.1§.
From this relation we can study the behavior of the parameters in terms of
My m?
o= 2 _53_ (2.19)
M3z m1,
For a < 1 we can see that the order of My is determined just by y3,. In this case,
considering the expressions of my,, + m7_, we obtain the ratio of M; to M given by

M mge(m3, +m3;) (2.20)
= 2 . .
My (mb,, +m¥ )miy(1+a) —ml, |a(miz + mgs):_%i + (M35 +m3y)
Then, we find that generic SO(10) models lead to m; given by
my = max[my,, +m;,bmg], where
2
[a(m%?, + m%z&)% + (M3 + m%Z)]
b= s , (2.21)

miy(1+ a)

We can consider the cases for b < 1 and b > 1. For b < 1, the order of magnitude of m;
is fixed simply by m,, +m.r ~ (1072,1071) eV. For b > 1, my ~ b(1073,1072) eV. This



points out an important consequence that the right-handed neutrino gets out of thermal
equilibrium when it is very non-relativistic [see next section| because m, < m; where

16 5/2 2
_ 3?/5 gi/2;\;— ~ 1.6 x 1073 eV (2.22)
P

M

with g, = 225 for the relativistic degrees of freedom in supersymmetric standard model.
This brings a strong suppression to the CP asymmetry generated through the decay of the
right-handed neutrino.

For a > 1, instead of the bound for Ms, we determine the bound for M3, which can be
obtained by taking the replacements: Ms < M3 and mi3 <> mq9 in eq. () Similarly,
the corresponding 7 is given by the relation (R.21)) with exchanging the indices 2 « 3 for
the expression of b.

This has the same behavior as eq. except that in GUT models the natural assump-
tion is to have y4; = O(1) and hence the second factor bm?, is likely to be the dominant.
Then this contribution to m; goes like my ~ meeygg / y’l’g which could be significantly bigger
than m, ~ 1073 V.

In all the models [J-[] and [[] in the basis where Mg is diagonal! the condition
eq. is satisfied for the case of the Dirac coupling of neutrinos and then we can identify
its behavior in terms of a and b. In [f], a particular realization of the case with @ > 1 and
Y33 = 1 was explored and one gets M; ~ 107 GeV and the wash-out factor, ~ 1072, to
the leptonic CP asymmetry in the decay of right-handed neutrinos. The other parameters
can bee seen in table [Il. In [f], one gets a = 0 because effectively only two right-handed
neutrinos are taken into account and the mass of the lightest right handed neutrino is
M; = O(10")GeV. In ], a < 1 and b € (O(0.1),1) and the mass of the lightest neutrino
is My = O(10(78))GeV. A realization of the case with a < 1 and b ~ 1 was explored
in [[i] and [A] where it is also not possible to achieve a successful thermal leptogenesis, due
to the washout factor, although the mass of the lightest right handed neutrino is of order
M; = O(101%) GeV. In table ] we have summarized the properties relevant for leptogenesis
of these models and we will make more comments about them in section P.3.3.

In the next section we take the limit
S13 — 0, t—0 and 1/M3 - 0, (223)

which gives a < 1 and b < 1 and allows to understand more deeply the connection of
(m% p)11 — 0 with the low mass of M; in GUT models.

2.3.2 Limit of s33 — 0, t — 0 and contributions proportional to 1/M3 negligible

The goal of this analysis is to identify the possible shapes of mY , and Mg in the basis
where Mg is diagonal and the form of the mixing angles in terms of their entries. We will

IFor the models [@, E], this transformation has been performed since for those models Mg is not diagonal
in the basis where the underlying symmetry is broken.



Model ~ Ref. Mg[GeV] — %Z—% b o
10(78) . ~1073 -
BKOT [ 109 ML ~x107% 3x102 e
100419 | 1y~ X104 (1075,1) eV
107
% 9 3 b mg, ~
CM [ 10 o 10 10 (1,10) eV
100 v v
DHR [f 1012 10-° o(1) My + My ™
Loi3 My, < 0.625 eV
107
RV 2] 108 0 O(1) ml, +mY.
> 1010

Table 1: Models based on SO(10) which do not generate the observed amount of baryon asymmetry
through the decay of the right handed neutrinos in thermal leptogenesis.

assume that the mixing of charged leptons is small and hence can be ignored. In the limit
under consideration, eq. (R.14) becomes much simpler as follows:

2
S1oT C12€23512T —C12512523T
My = My, | C12c23512T C39C3ar + 835672 —}yCa3593r + Cogsagze™ 27 | . (2.24)

—C12812823T —ClC3823T + Co3S23€™ 217 398351 + 7293,

When comparing the elements mg; of eq. with those of eq. P.1§, we have six
equations to solve, which are more than the low-energy parameters to determine: one mass
ratio, two angles and one phase. Thus the elements of m” and Mp are more restricted.
By comparing the m”, component in eq. and eq. .15, we can readily identify Mo:

2
mis

My=—12_ 2.25
ml/srs%2 ( )

Considering the ratio my, /m¢,, we obtain an important relation:

tog = — 282, (2.26)
mo2

Analogously the ratio mj,. /m?_ leads to

M
m21M31 + 7 M22Mm32

2 My, 2
m3y + 37, M32

tog = (2.27)

[1 + C%thgre%’]
_ 22 2ic .
1— cjyre

When we determine the ratio M;/Ms we can put a restriction on the elements mo; and
mg1 from eq. and eq. P-27. Now the solar mixing angle is given by the following simple

equation; m m
12 32

M2 \/m3y +m3,

tiy = + (2.28)

,10,



which is obtained by considering my, /my,, and the relation t35 = m3y/m3,. Adding my,
and mY_ we obtain

M [I’S%Q} [ m3; +m3 ] |:r8%2:| 2 2 \,2i
= . ~ ms, +msq)e ", 2.29
M, miy | Le727 +rcdy (1 — t3,) m2, (may 51) (2.29)

where the last equality follows from eq. P.2§. Analogously by adding my,. and m7, we
obtain

rs%2 2
M, s | [maiman +m3]

M 2 — . (2.30)
9 67210023(023 + 323) + req, <323(323 — 023) — ml—i[mgg + m22m32]>

Now dividing eq. by eq. we can find solutions for p = mg;/m3; and then all the
parameters can be expressed in terms of two unknowns; ms; and moo. It is illustrative to
consider the limiting case of to3 = 1 given the fact that the atmospheric neutrino mixing is
the best measured quantity; 3, = 1;8:%. Note in this case that we have the two solutions
p =0 or p=1 along with the following relations;

may = —moy  and M3y = 2t3,m3, . (2.31)

Equating eq. and eq. we find
_ m§1 1

M1 . o
M ml, E with k= 5[(1 —p) — (1 +p)ciyre® ], (2.32)

which leads us from eq. to

—9m2
S g,

M, = (2.33)

2
Crat My

Now we find that eq. is indeed compatible with eq. for p = 1.

Form of the matrix mY7 5. Allowing a deviation from the limiting case of o3 = 1, we
can get more general values for the parameters. In any case, we note that given mos we
can determine the elements mgs and mio through low energy observables; t1o and to3 as
in eq. .28, and hence fix the scale of My by using m,, and r. Although we cannot fix the
values of ms; and mg; independently, we can fix their ratio p and satisfy all experimental
constraints. Then we can see how the hierarchy of M; and M, depends on the ratio of m2,
and mgl.
That is, we determine the following structure of m?% p

0 217:2%7’)7@2 T
mip=|pms ma 22|, (2.34)

m31 —ta3maoy I3

where the elements of the third column cannot be determined due to the limit 1/M3; — 0

we have taken, and we can see that all the entries in the second column are of comparable
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order. As we mentioned before, the motivation for having (m% )11 — 0 was linked more
closely to the symmetric fits, which implies mis ~ maoj. From eq. .29, we can write

2 2
_M ~ —2 1‘812 2 5
2 mis p

(2.35)

which leads us to a conclusion of M;/Ms ~ 0.2 with p = 1. In the following, we will give
more precise determination of the right-handed neutrino masses further considering the

SO(10) structure of mY p, in eq. P.34.

2.3.3 SO(10) and the scale of M,

We started our discussion by considering an underlying SO(10) framework with
the mass matrix relation (2.7). Then, it has been realized that at least one non-
renormalizable operator should be included in the Yukawa sector to get a successful fit
to the quark and charged-lepton sectors. Generically the representations which break
the SO(10) down to SU(5) or SU(4)c x SU(2)r x SU(2)r and then further down to
SU(3)c x SU(2)r, x U(1)y do not give rise to the appropriate structures of fermion masses,
and thus we need to add at least one non-renormalizable operator. As we mentioned, the
non-renormalizable operator involving the 45 representation is quite useful since its vev
can be aligned in the B — L 4+ kTgrs3 direction for k € Z whose value is different for every
species of fermions. As we discussed in section P.1], fits to the quark masses [R0]-[RJ], give
a structure of the up-sector of the form

uvw
Yinlovzyl|, vy, u<wgv, v<z, y<zz~0(1), (2.36)
wy 2

where the exact symmetry of the matrix is not necessary but the orders of magnitude in
the elements Y7 and Y}; have to be the same. In the previous section R.3.3, we determined
the possible form of mY , which can be naturally understood in the context of the SO(10)
models when ms; ~ mos. There are two forms of Yukawa matrices for the Dirac neutrinos

that have been exploited in the literature:

u v, w
12 13 / / / / / / / / /
{ U L Wi~ Wyy ~ Vg~ Voy,  Vjg ~ T~ Ygg ~ Yoy L1

YI/ . UI x/ y/
- 21 23 / / / / ! / / / /
wh gy 2 U L vy~ Uy L Wip ~ Wy, Wi KT~ Yzg ~ Yoy L 1
31 Y32

(2.37)

Each of these has been justified within the context of SO(10) and a particular flavour
symmetry. However we can see that only the first pattern of eq. agrees with eq. .34
The models [[[j (BKOT), [1J (CM) and [P] (RV) are examples of the first form of Y in
eq. .37. In [P, for instance, the behavior of 2/ ~ w’ ~ v/, which is different from v < y <
in the up-quark sector, was explained by the coupling of the elements (2,2) and (2, 3) to a
45 representation whose vev is proportional to B—L+2Tg 3. This vev is different from zero
for up-quarks while it vanishes for neutrinos and thus one is forced to take into account the
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next leading contribution which has to be of the same order for the entries (1,2) and (1,3)
leading to a large mixing solution. The model of [ff] (DHR) is an example of the second
case. It has also a coupling of a 45 representation in the (2,3) sectors. But the difference
with respect to the up-quark Yukawa couplings is given by the vev breaking the flavour
symmetry D3 X U(1) X Zs x Z3 and together with the other orders of magnitude in Y” a
large mixing is achieved. In this model it is also important to note that the contributions
proportional to 1/Ms to the oscillation neutrino masses become relevant. Due to this,
the complete analysis of section does not apply here, since we have derived eq.
assuming the contribution proportional to 1/Ms is negligible. Now, eq. fixes the order
of €, as follows;

SHS:

€y =

M 3,6) %1072, Zalla? z=1 sund (238)
me z
For the first case of eq. R.37, v’ is straightforwardly related to v:

vV=v~e (2.39)

w

On the other hand, for the second case of eq. R.37, v’ is also related to the up-sector but
due to the structure of D3 x U(1) x Zy X Z3 it is given by

v~ € (2.40)

Once the scale of m?, is fixed, we can determine the order of magnitude of My with yY, =
c(5 x 1072)3,

N Y32 sin2 B/2

v
mee

M, = ?sin? 3(0.5,2.4) x 103GeV, (2.41)
where c is an O(1) number and mY, is taken from eq. [A.] considering the normal hierarchical
spectrum of low energy neutrinos, t < r, and the uncertainties in eq. B-J are taken into
account. When r ~ t, non-trivial phases can make m}, very small and the above estimation
of Mj has to be considered just as a lower bound. For eq. P41 we have ¢ < 1 and
b < 1, and hence this estimation can be applied to the BKOT, CM and RM models.
For the model DHR [[] having y12 = 6.27 x 1073 = O(¢2), one gets much larger value:
My = (0.3,1.1) x 10'2GeV which agrees with the value quoted in table [. We have to stress
that in this case the contributions proportional to 1/M3 are not negligible.

For the explicit case with p = 1 analyzed in section R.3.9, the ratio of M;/Ms becomes

2
Ml o m31

— = 0.089,0.19). 2.42
i = ) (242)

Thus, we get the ranges of M ~ (0.045,0.46) x 108 GeV taking sin? 3 = 1.
3. Baryogenesis through leptogenesis

3.1 Thermal leptogenesis

The CP violating asymmetry generated in the decay of heavy right handed neutrino into
a Higgs boson and a left-handed lepton and its CP conjugated channel, and its supersym-
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metric counterpart are

FNiyl - FNZJ FNZ,Z - F
€N, - | T~ = 7:[1

o= , €x = 3.1
P Tna+Ty N Ty, +T5g (3.1)

where I'y, ; = X0 3I'(N; — laHg) and 'y, 7 = Yasl(Ng, — Za}_[g) are the NN; decay
rates into { and [ respectively. For the right-handed sneutrino N; decay rates, one has the
final states with the lepton I and slepton I. The B — L asymmetry generated by the right
handed (s)neutrino decays is given by

Y = —nilen, Yy, + eNiY]%?] = ;—ZYB (3.2)
where Yp is the resulting baryon asymmetry converted from the Yp_j by the electroweak
sphaleron processes, and 7; is the efficiency factor that measures the number density of
N;/N; decays at low temperature T' < M; and Y4 = Y°U(T > M;) = 135¢(3)/ (47 g,).
For g, = 225 in the supersymmetric model, one gets Y5 = 1.9x 1073, Since N; and N; give
the same contributions in the supersymmetric limit; I'y, =T’ 5 = I'; and ey, = € N, = €
one can express the final baryon asymmetry as

Y =13x103n;¢ (3.3)

where the observation requires Yz ~ 10719 We recall that the decay rate for the right-
handed (s)neutrino is

Y.PTY.P)uMy,
Iy =TNu+Tn = ( Zﬂ)” 2 (3.4)
Then the CP asymmetry can be expressed by
D
| I [TV M? 5
€ = — — |, .
bt PP M

where, whenever the hierarchy vaj /M]2VZ = x is good enough, the function f(z) is just
flx) ~ —%. In the above expression, we neglected the lepton flavor dependence in the
CP asymmetry which will be taken into account in the next subsection.

In our case, the right-handed neutrinos are charged under the SO(10) gauge group
and thus are in thermal equilibrium at high temperature. The efficiency factor n; can be
calculated given the value of K; =T';/H(T = M;);

my m;
K= T T6x103ev (3.6)

where the effective neutrino mass m; is defined by m; = 4nl;w?/M2. If K; <1, the
efficiency reached its maximum 7; = 1. However, when K; > 1 as is the case in most SO(10)
models, the inverse decay remains effective for 7" < M; and its decoupling temperature

z; = M;/T; is given by [B§
K, 5 m
Zzzf’e 1+ Pt 1 (3.7)
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and the corresponding efficiency factor can be well approximately by the simple form

2
e (1 - e—ZiKW) . (3.8)
(] (2

It is important for our case, eq. and 3%, ~ O(€}), to notice that the lepton asym-
metry along the electron direction generated by the second lightest right-handed neutrino
Ny is not washed out by the lightest right-handed neutrino Ny as we have y1; — 0. There-
fore, let us consider the possibility of a successful leptogenesis either from N or Ny whose
effective neutrino masses are

2

~ v .

My = o sin B2 |yz12[1 + p?] = my, ~ 0.05eV,
1

2 1 t2
iy = —— sin 62|y22|2¥ ~ My, ~ 0.009¢V . (3.9)
M2 023
Thus we get
(31.3,7.51) for i=1
K;, z) = 3.10
(K, zi) { (6.26,4.96) for i=2 (3:10)
leading to
85x 1073 for i=1
; = 3.11
g {6.4><102 for i=2 (8.11)
On the other hand, one can readily check that we have
3 M,
0O ~ 2 2L < qp—10 3.12

putting the numerical values determined by the procedure of section R.J. This is too
small to produce the required amount of baryon asymmetry, 10710, as expected from a
general discussion with hierarchical neutrino mass spectrum [[j]. For the case of the DHR
model [f], since the structure of Y is different and the contribution from the three right
handed neutrinos is important then it would be possible to achieve an acceptable value
of the CP violation parameter relevant for leptogenesis [[f]. However, the DHR model
requires M; ~ 10'° GeV which may cause the gravitino problem as will be discussed in the
following,.

3.2 Soft leptogenesis

It has been pointed out [[F] that the B-term soft supersymmetry breaking of the right-
handed sneutrino provides an additional source of lepton number and CP violation, where
the relevant couplings are given by

s oo~ R . 1 o~ o~
—Esoft = (m?v)gNEZNRj+(al]eleGE@'hd—i—aZJNleNRihu+h-C)+ <§(bN);NEZNE] + hC) .
(3.13)

The effects of by = BMp terms are usually ignored because they are assumed to be highly
suppressed by the difference in scales of the typical supersymmetric masses, 103 GeV, with
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respect to the masses of the singlet neutrinos, Mg > 107 GeV. It turns out that there is a
region in the parameter space of B and Mg compatible with models for which the masses
of right-handed neutrinos are as low as Mg ~ (107 — 108) GeV. The non-vanishing value
of the generated lepton asymmetry is a pure thermal effect since at T' = 0 the generated
lepton asymmetry in leptons cancels the one in sleptons:

AT, B [ImA]
€7 _TH., = —€j. g = ,
N;—IHy N, —IlH 432_{_:[1?% Mz

(3.14)

where A = an/Y". At finite temperature 7' # 0, the difference between the fermion
and boson statistics yields non-vanishing lepton and CP asymmetry of the form ¢;(z) =
€y, .ig,0BF(2) where dpp(z) can be approximated for z > 1 by the analytic function
of dpr(z) = 2v2K1(v22)/K1(2) with Ki(z) is the modified Bessel function of the first
kind [R9].

Thus, in the soft leptogenesis, one gets the reduced efficiency defined by

_ K1(V2%)
P2V 22— X, 3.15
i ~ 22 Ky (3.15)
where z; is the decoupling temperature of the inverse decay calculated before. For our case
with z; = 7.51 and 4.96, we get dpp(z;) = 0.105 and 0.3 and thus

if\J

3 {8.9><10_4 for i=1

~ ) 3.16
1.9x 1072 for i=2 (3.16)

Therefore, we require € Nyim, 8.6 x 1075 and 4.0 x 107 correspondingly for a successful
leptogenesis. When I'; < B, we get

IR | _ - 3.17
Ni—ia ¥ BTM; T 4m? B (3:.17)

Note here that we have calculated the largest CP asymmetries in N; decaying to each flavor
[. That is, only the e asymmetry is much smaller than the above expression for the Ny
decay due to the property of Y] — 0. Other flavor asymmetries are almost the same, which
can be seen from eq. (2.34). Now one can find that the lightest right-handed sneutrino N
cannot produce enough lepton asymmetry due to a strong wash-out suppression. However,
in the case of Ny with My = 108 GeV, the desired value of €Nyt 4.0 x 1076 is found to
be achieved for the hierarchical choice of soft parameters; Im[A] ~ 1.7 TeV and B = 1 GeV.
A crucial feature of our scheme is that the lepton asymmetry generated by the Ns decay
is not erased out by the interactions involving N; only in the electron direction due to the
property of Y4y — 0. Thus, we are relying on the flavor-dependent leptogenesis which has
been discussed recently in various contexts [B(].

Note that the leptogenesis scale ~ 108 GeV can be marginally allowed in view of
abundant unstable gravitinos which decay late and upset the standard prediction of the
big-bang neucleosynthesis [B1]. Recent analyses showed that the upper bound on the
reheat temperature is Tp = 2 x 106 — 3 x 108 GeV for the typical gravitino mass range of
mgjp = 102—103 GeV, assuming the hadronic branching ratio of the gravitino decay is 1073.
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We also remark that the bound on the reheat temperature can be loosened if the gravitino
is stable and forms dark matter. In this case, the next lightest supersymmetric particle
needs to be a stau and the reheat temperature up to T = 101 GeV can be acceptable [B7).

4. Supergravity description of a small B term

It has been pointed out that the smallness of the B term may arise if we have for example
a dynamical mechanism that sets B = 0 at the leading order by arranging a specific form
of the superpotential ref. [BJ]. However, we find it difficult to achieve such a mechanism
without introducing a fine tuning of parameters in the general supergravity context. In
this scenario, the other ingredient to produce a small B term of the order m§ /2 /My, it
may be through a term [ df#*XTXN;N; as in [B4-[B.

To illustrate difficulties in a dynamical set up of B = 0 in supergravity, let us consider
the superpotential suggested in ref. [B]

where ®; can be an observable field such as an multiplet of SO(10) (that is, 126 as N can
be 16) or any field in the hidden sector. The minimization condition of the scalar potential
V = X [KF;F; — 3|W|?] reads V; = 0 where

V=€l KﬁFiFJ—. + KT [F{(WEK3) + F5(Wy + KW, + KyW)] — 3W1W] + K|V (4.2)

is the derivative of the potential V with respect to a field I. Here we have defined F; =
Wi, + K;W. The b term coming from the scalar potential is given by

b= e [KﬁF;(m 4 Kop) — 3uW + Q/J,W} (4.3)

where the last term comes from |Fy|? = [2uN + KxW|? with the minimal kinetic term for
N; Ky = N. On the other hand the minimization condition for X is

0=KY [R(WEK;x) + F(Wix + K;Wx + KixW)] — 3WxW, (4.4)

assuming K}g =0 and V = 0 at the minimum. The indices ¢ and j in the above equation
contain ®; and X. Assuming there is no mixing term between them in K (that is, K¢, x = 0
and Kg,x = 0), we separate the X index to write

0 = K [F5(W;x + KiWx)] — 3WxW
+KXX [FxWK gy + Fx(Wxx + ExWx + KxxW)] . (4.5)
Thus we need to arrange the second line of eq. [.J and the W;x contribution to sum up
to 2uW to cancel the above b term in eq. .d. We find that, with an specific form of a

Kahler potential, one can achieve such a condition which however requires a fine tuning of
the parameters involved and does not have a real theoretical justification.
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The simplest way to arrange the condition of B = 0 is to rely on the no-scale super-
gravity models as in ref. [Bf]. For this, let us take the hidden sector field ¢ with a Kilher
potential

K = —3log(¢ + ¢%),

and its Yukawa coupling to matter fields
Yio120(¢) = e, Y126 = const. (4.6)

This can be a consequence of an U(1) symmetry under which ¢ transforms like ¢ —
¢+ e, and then 16.16.10 and 16.16.120 are charged but 16.16.126 is not. The A terms
associated to the Yukawa couplings are given by [B7]

AY = —mg)o(d + ¢*)0sY. (4.7)

Therefore, we obtain Ay 120 ~ M3/ and B = A6 = 0 at the GUT scale.

On the other hand the smallness of the B term needed for a successful soft leptogenesis
could follow simply from a tuning among various supersymmetry breaking terms, which
is technically natural if it is stable under sub-leading corrections. It is amusing to realize
that the B term receives an important radiative correction due to gauge interactions of the
right-handed (s)neutrinos. In the context of SO(10), the right-handed (s)neutrinos have a
coupling to a heavy gauge boson X and the corresponding gaugino X which also obtains
a supersymmetry breaking mass my,. Specifically, the gauge coupling N-N-X leads to
the one-loop correction to the B term of N which is given by

o Mx

where M is the mass scale of the heavy gauge boson X or the B — L symmetry breaking,
for instance. Now, putting o = 1/30, M = 10® GeV and Mx = 10'° GeV, we find B ~
10_2m1/2 which gives us the required value of B ~ 1GeV for my/, = 100 GeV.

5. Conclusions

The motivation of our work was to understand why in many GUT models which describe
successfully the right values of fermion masses and mixings ([Ef@, E]), it is not possible to
achieve the observed baryon asymmetry through the decay of heavy right-handed neutrinos.
Apart from the strong hierarchy in the neutrino Yukawa couplings Y, two factors are
important: first linking m" and m? , (in the simplest case they could be the same), which
is a general SO(10) GUT relation, and then having the special feature of Y] — 0. Starting
from these conditions we reconstructed the general structure of Y¥ and the mass scales
of two right-handed neutrinos which are compatible with the neutrino data as well as the
GUT relations enforced by a certain flavor symmetry in the decoupling limit of the heaviest
right-handed neutrinos.

Our analysis shows that the neutrino couplings associated with two light right-handed
neutrinos are determined by Y/ ;o ~ €3 ~ 107* while the right-handed neutrino masses
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are of order (107 — 10%) GeV. Conventionally, such a parameter region is far away from
a successful leptogenesis unless a certain fine-tuning is arranged between two light right-
handed neutrinos to resonantly enhance the resulting lepton asymmetry. However, the
soft leptogenesis arising from the CP phases of A and B supersymmetry breaking soft
parameters can work consistently with our picture although our parameters are in the
strong wash-out regime of the lepton asymmetry. The basic ingredients for this to occur
are (i) Y4 — 0 and (ii) a resonance condition of B ~ I'. The first property protects
the electron asymmetry which is generated by the second lightest right-handed sneutrino
whose wash-out factor is favorably smaller. Interestingly the resonance condition requiring
B ~ 1GeV can be a consequence of the gauge one-loop correction involving the coupling
of the right-handed sneutrino to the heavy GUT gaugino. For the vanishing condition of
the tree-level B term, one may invoke no-scale supergravity, as it is difficult to achieve
a dynamical realization of B = 0 by arranging a specific form of the superpotential and
Kahler potential, which requires to introduce a fine tuning of parameters in the general
supergravity context.
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A. Numerical form of m,
The order of magnitudes in m, can be illustrated in the case m,, > m,, > m,,, for which

we determine numerically the approximate values of m, up to the value of t < r, eq. .4,
and the limit s?; < 0.041:

= 0.0542 + 575 +0.719t

513
0.102(0.600 — 0.375 s13) + —= —
Myg ( 13) /2

513
= —0.102(0.600 + 0.375 s + —= 4+ 0.848(0.375 — 0.600s13)t
o~ ( 13) 7 ( 13)

1
(M) _ 5 +0.193(0.600 — 0.376 s13)° — (0.375 — 0.600 513)°t

0.848(0.375 + 0.600s13) t

, 1
(M) 5 — 0-193(0.600 — 0.376 513)(0.600 — 0.376513)

—(0.375 + 0.600 s15)(0.375 — 0.600 s13)t

1
= 5 — 0.193(0.600 +0.375513)* + (0.375 — 0.600s13)°t. (A.1)
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B. Fit to a particular form of symmetric Yukawa matrices

B.1 Assumptions

A fit of textures for up and down Yukawa matrices of the form eq. with Y71 negligible
can be made compatible with the experimental information, under the following theoretical
assumptions:

(a) Yukawa matrices are the only source of CP violation.

(b) We have a supersymmetric scenario which respects at low energy the constraints of
unitarity of the CKM matrix.

(c¢) The supersymmetric corrections to the ratios 2+, 2 and ™= do not exceed the
mq ms my

percentage of error on those ratios as quoted in table .

Since we have assumed (a) and (b), we must make the fits that test the unitarity
of the CKM matrix in the Standard Model, where all experimental information has been
taken into account, rather than to specific experiments. We use the classical fit [i(f, which
takes into account the measurements of the following flavour violating processes:

Vsl [Vial ”
Ves|” Vasl”

Amp,, Amp, and sinp. (B.1)

These fits are a test of the unitarity of the CKM matrix in the Standard Model. That is,
if all the experimental inputs in eq. B.]] are in agreement with the unitary of the CKM
matrix, the statistical and systematic errors are under control on those measurements and
there is no sensitivity to physics beyond the Standard Model in those processes then after
the fit all these fitted quantities will agree with their input values at the 68% confidence
level (C.L.). If some of them do not agree then there is an indication of either (i) the
departure of the unitarity of the CKM matrix, (ii) a large correction from statistical or
systematic errors in the experimental measurements, or (iii) a contribution from process
beyond the standard model to the constraints eq. [B.1] at the level of sensitivity at which
the measurements and the analyses are performed. The other part of our experimental
inputs comes from considering the following mass ratios

My Me Mg

B.2
mg  ms  mp’ (B.2)
at the scale My, as well as the chiral perturbation parameter @ [B9:

1 — (ms/ma)?

We take into account the renormalization from the low scales, at which the quark masses

are measured or computed according to experimental data, up to My as

mZ(Mz)

_ mi(Mz) - Mz)
= m;(2 GeV)

= for i =u, d, s.

for i=c¢ b, t;
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At two loops in QCD they can be estimated to be n. = 0.56, n, = 0.69, 1 = 1.06, 1, = 14
=1ns = 0.65.

The form of the Yukawa matrix eq. is thought as being compatible with super-
symmetric SO(10) models for which tan 3 is large, (~ 40-50). In this case the corrections
to quark masses are not negligible, e.g., for the b quark can be up to 20% [B§. Thus strictly
speaking we have

\/_MW L cos Bg(1 + e, tan Bs), my, \/_M smﬁs(l—l—efu tan fBg),

where the parameters €, depend on the supersymmetric particles, such as charginos,
neutralinos and gluinos, and yy, are eigenvalues of the Yukawa matrices. However we
assume here that the ratios are not strongly affected by those corrections:
m 1+e€ 1
Mu _ 2 HCulu _ 2% o, (B.4)
me 1+ é€ye Tuc Ye
analogously for the other mass ratios considered.
Under the conditions of eq. then we expect the angles of the left diagonalization

/yu
qf Tuca
mirs
s 12 = ’
Ys + Ya 1+ Ddry,

ms

r
d sb
Y33 my

22—;7“5(,4- 177

matrices to be given as

(B.5)

where 745, are defined as in eq. [B.4, and s% now contains my in the denominator, which
is a correction to the approximate formula 3?2 = \/mg/ms. The angle sgg is obtained, of
course, assuming that it is small and extracted from the relation,

sy = Y, Y Y5 — Viis33
Y, y Yih(1+2s33)

The rest of the diagonalization angles are subject to the following conditions:
sy K sy < sly, sl Ssly < sy, sk < 8Ys. (B.6)

If we assume that the phases of the elements Y5} and Yz vanish or are the same, we can
describe then the angles defining the CKM matrix in terms of two phases, ¢1, ¢2 3
i1

i d d .u
s12€"71? = 7y — (psipe

i 4 il 4 il
s13e~ % = Sl3el(¢>2 ©v12) —8%282361((1)1 ©12)

§93 — 853, (B?)
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Figure 1: 2D probabilities (a) for K and ¢; and (b) for K and ¢2, the C.L. shown are at 68%,
95% and 99%.

where then ¢ and ¢o will be given as combination of the phases of the elements Yzf ,
except for (i,7) = (2,3) and for Y4 that we are neglecting. Hence the CKM elements are

expressed in terms of

d d _i(¢pa—
|Vus| = ’3%2323 - 313el(¢2 ¢>1)”
d
|Veo| = |523|,
d d —i d
Vid sy — chystper 1 ol pmitn _ gu od i || _ |pd _ 513 ids
Vil T 4 7 |513€ 512523€ = |12 q € »s
ts €12 523 23
d d i
[Vaus| = [s12 — 3?20126“1)1‘7
mJ = (s2.)2¢0 4 s o d qu oo _ — ¢ Ksi B.S
mJ = (523) Cla | 512512 8in @1 + o5 K sin(¢ — ¢2) — sfo K singa |, (B.8)

where K = s{;/s%,. In eq. B.§, the quantities that are not given by the form of the matrix
eq. or by the conditions eq. [B.g, are

sty, ¢1 and  ¢o. (B.9)

Assuming s¢; < s¢; and given eq. B.§, we have sd; < s%,. Also from the dependence of
Via/Vis on s¢s and sd; and from the fact that we are fitting to s4; directly because we are
effectively making V, = Sg?’, we can fit to K and the phases ¢ and ¢9. Here we choose to
fit also ¢1 to check the level of compatibility of having ¢1 = 7 /2.

B.2 Method of the fit

Note that we do not know all the entries in eq. B.§ and we have 4 CKM parameters and 3
mass ratios from which we can fit. Thus, instead of using a x method, we use a Bayesian

approach where we can obtain the combined probability distribution for K, ¢o and ¢q,
which is identified with the likelihood;

ﬁ(K,¢17¢2)0</‘H F(Glej (K, 1, o, {i})) x [ filws) dai x fo(K, 1, ¢2), (B.10)

]:17M ’L’=1,N
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Input Values
Constraints Value & Gaussian errors Flat errors % of error Referen.
Vs | (3.68310099) x 1073 ]
|V (41.61%0:63) x 1072 ‘
Vial/|Vis| 0.20035:0055 )
Vs 0.227150:06100 ‘
Im{J} (2.9115:2%) x 1075 «
Varied Parameters.
% 0.553 + 0.043 7.7%
= 11.3 £ 2.8 33.5%
m—z 0.0213 £ 0.006 28%
Q 22.7+0.8
vy 0.036 +0.014
Y33

Table 2: Input values for constraints and varied parameters which are also fitted.

where f(¢jlcj(K, ¢1, p2{x;})) is the conditional probability density function (pdf) of the
constraints ¢; = |[Vip|, [Veb|,Vus, [Vadl/|Vis| and Im{J} given their dependence as functions
of the texture parameters: silz, 579, ccllQ, scll3and sg3 as well as the parameters and z; =

{mu/mda mc/mSa ms/mb, Q}
We have taken the values of the constraints ¢; = |Vipl, |Ves|,Vus, |Vidl/|Vis| and
Im{J} from the most recent CKM fitter results [{] , listed in table B. The values of the

observables
sin2a;, sin28, sin 27, (B.11)

that we have to compare to our fit are then the values from the same CKM fitter results.
Here

a = Arg[-V31 V35 / (Vi1 Vis)],
B = Arg[—Va1Va3/(V31V33)]
v = Arg[-V11Vi5/(Va1Vas3)],

are the angles of the unitary triangle of the CKM matrix V.

For our fit then the fitted values of the parameter of texture eq. will be in agree-
ment with the fits of the CKM fitter of the unitary triangle, assuming that the supersym-
metric contributions are not relevant at the sensitivity at which the parameters eq. [B.1] are
related to their SM counterpart.

B.3 Results and comments

In figure [, we show the results for the 2D probabilities of the parameter K versus ¢

and ¢;. Given the method used for this fit we expect at least a 95% C.L. compatibility
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Other values from the CKM fitter

Parameter CKM value +10 C.L. +20 C.L. Direct exp. value £10 C.L. +2¢ C.L.

4.0 80 F10.7 T2l
; Myiosl 8 A8 royis e
+0. +1. +1. +2.
1] 22.03§%62 7%'828 21.2333_99 7%296
+9. +18. + +
g 59.0157 —-7.3 60.015, —39

Table 3: Relevant information from experiments and from the CKM fitter [[t]]. The later are
included indirectly in the fit because they are not used as constraints.

Output Values
Parameter Value = errors
K 0.04475:00
1 153075030
¢3 —0.877 50351
B 00l
|Vl (3.7550.067) x 107
Vol (4225705 x 100
Veal/[Vis| - 0.204645:0057
|Vas| 0.2275175 006%1
Im{.J} (3.02751%) x 1077
o (82.14753)°
B (21.8377%;)°
5 ~ § = (60.323)°

Table 4: Our output values.

with what we have fitted. If that is not the case then obviously one of our theoretical
assumptions should be modified. However we do have a 68% C.L. compatibility of all of
our input values with the output (fitted) information. We show in table ] the input values
used for the fit. We have chosen to use the results of the CKM fitter collaboration [f]
(which provides the SM fits to the Particle Data Group). In table [J we show for comparison
the different values of the unitary angles. In table [ we show the results of our fit.

We can notice indeed that while the output angles 3 and « are fitted in great agreement
with the inputs, the angle a tends to be lower than the CKM fitter central value, although
compatible at 68% C.L. This tendency could be due to the fact that the unitary triangle
(UT) fit itself have shown consistently during the last 5 years a difficulty in fitting the
unitary condition itself: m = a+ 3+ (which is used in such fits with respect to the direct
measurements) as we can immediately see also in table . Except for the fits of last year,
all the angles of the UT fits have nevertheless being in agreement with that condition at
68% C.L. But there is still the possibility that there could be a sizable beyond the SM
contribution that could show in future analyses, therefore changing the contribution of the
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SM values to the fitted values of the unitary angles. Note also that the central value of the
direct experimental value of « is lower than the central value of the CKM fitter and the
errors are comparable.

Another thing to consider, of course, is that the model based in eqgs. (R.36)), (B.3)
and (B.7) would need to include corrections or modifications. Among them are the su-
persymmetric corrections to the quark masses that should be carefully taken into account,
or deviations from the symmetric textures. These deviations are indeed formally present
since the symmetric structure of the mass matrices is valid just at the GUT scale and
may get sizable modification by the RGE running to the electroweak scale. Given the
increasing precision in the determination of the unitary triangle fits, this running should
be taken into account. The running effects give a correction to the relation sf, of the form
sy &~ 1/ry/my/me, where r is a parameter of O(1) measuring the slight non-symmetry of
the elements |Y;%| and |Y34|. Another possible modification is the one pointed out in [24],
namely allowing the contribution of Y}] to become non negligible. This produces the same
relation of s}y ~ 1/ry/m,/m. with r depending on the non negligible Y4 element. A
separate question, independent of the fit itself, is whether this fit is compatible with a
particular realization of a horizontal symmetry, like the one proposed in [R3].
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